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A time-stepping model of a transversely vibrating, simply supported beam which allows
the inclusion of non-linear damage such as a breathing crack is presented. It is based on the
approximation that the mass and inertia of the beam may be lumped at points along the
beam and the beam #exibility may be represented by discrete springs between rigid blocks.
The advantage of a time-stepping approach over other models reported is that it enables the
#exibility of the springs to be altered at any time during the analysis allowing the modelling
of non-linear damage. The natural frequencies and mode shapes predicted by the model for
an undamaged beam are validated against theoretical values and the representation of
a non-linear mechanism in the model is compared with experimental data. The model
predictions are shown to be accurate for both the undamaged and the non-linear cases.
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1. INTRODUCTION

There has been interest for many years in the vibrational behaviour of cracked beams in the
condition monitoring "eld. Numerous models of beams with cracks have been developed.
These generally include either a crack that is permanently open or a &&breathing'' crack
which opens and closes during vibration.

Many models represent the cracked beam as a series of undamaged beam "nite elements
with the crack represented as either a reduced sti!ness in one element or a massless
rotational spring at the joint between two of the beam elements. Rizos et al. [1] modelled
a beam with an open crack as two undamaged beams connected by a spring. They used the
general form of the modal shapes of the two undamaged beams along with the boundary
conditions at the crack location to develop equations for the displacements on either side of
the crack. The spring compliance was found using the strain energy function of the crack
(reference [2]). A similar approach was used by Narkis [3] to relate the natural frequency of
a beam with a double-edged crack to the crack position and depth. The method was
extended to a beam with a series of cracks by Shifrin and Ruotolo [4] and to a crack in
a beam with variable cross-section by Nandwana and Maiti [5]. A variation on this
approach was suggested by FernaH ndez-SaH ez et al. [6], who calculated the displaced shapes
by adding a polynomial function in terms of distance away from the crack to the
undamaged displaced shapes on either side of the crack. The coe$cients in the polynomials
were calculated by using the boundary conditions and slope discontinuity (caused by the
spring representing damage) at the crack position. Chaudhari and Maiti [7] derived
equations for the mode shape of a tapered beam on either side of a crack and went on to
demonstrate how the crack location and size might be calculated from the "rst three natural
frequencies.
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An alternative method was proposed by Mahmoud et al. [8]. They divided the beam
along its length into many elements and, after lumping the mass for each element at the
centre of the element, derived a matrix equation relating the forces and displacements of one
end of an element to the other. The open crack was included as a reduced sti!ness of one of
the elements. A root searching technique was then used to "nd the natural frequencies by
using the matrix equations and boundary conditions.

For most applications, applying a simple sti!ness reduction is unrealistic, since most
cracks open and close during oscillations, unless a static load is also applied. Gudmundson
[9] noted that although the model he proposed, based on a spring representing
a permanently open crack, was a good representation of the behaviour of a cantilever beam
with a notch cut out, it over-predicted the change in frequency when considering a fatigue
crack. Ballo [10] modelled a cracked rotating shaft with the breathing crack represented by
a rotational spring element which had di!erent properties depending on whether the
curvature was positive or negative. Cheng et al. [11] also modelled the breathing crack as
a non-linear spring, but their model was limited to the fundamental mode as they had to
assume that the changes in the spring properties occur at the fundamental frequency to
enable the equation of motion for the beam to be solved.

Sundermeyer and Weaver [12] demonstrated a potential use of the non-linear behaviour
of a breathing crack in detecting the existence of the crack. They used a model with
a bilinear spring representing the crack to show that, in theory, for a beam that is excited at
two frequencies simultaneously the steady state signal consists not only of the two driving
frequencies, as expected, but also a component at a frequency equal to the di!erence
between the two driving frequencies. This was thought to be due to the bilinear sti!ness
properties of the spring. They concluded that this additional frequency component could be
a useful indicator of bilinear behaviour resulting from damage.

Qian et al. [13] used a beam "nite element formulation, in which di!erent EI values for
positive and negative curvature were used to represent the crack opening and closure.
Rotational inertia and shear e!ects were not included in the formulation though the
approach could be modi"ed to include these terms (see the book by Petyt [14]). The crack
mechanism assumed is very simple, since it assumes complete opening and closure
always occur at zero curvature. A more general approach would allow the sti!ness change
to occur at some non-zero curvature, but this would be considerably more complex to
implement.

The idea of representing a crack as a spring is extended here. Rather than using
a rotational spring for damage and Timoshenko or Euler}Bernoulli beams between cracks,
it is proposed in this paper to represent the bending and shear deformation also by using
springs. The beam is divided into short rigid blocks joined with rotational and transverse
springs which represent bending and shear deformation respectively. Any sti!ness reduction
due to a crack is represented by adjusting the rotational spring sti!ness at that spring
position. It is then possible to derive equations for the displacement and rotation of each
rigid block in terms of the accelerations (both transverse and rotational) of the blocks and
use these equations in a time-stepping method to "nd the response of the beam to a set of
initial conditions. The advantage of this approach is that, as well as being capable of
including rotational inertia and shear deformation, the spring sti!ness equation at the crack
position may be easily altered between time steps, allowing a bilinear breathing crack or
a more complex fatigue crack to be modelled.

Firstly, the model for a simply supported beam with shear distortion ignored is derived.
The natural frequencies predicted by using the model for a varying number of blocks are
compared with the theoretical frequencies based on the di!erential equation of motion for
the beam. Then the model is extended to include shear distortion and the predicted natural
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frequencies are compared with the theoretical values. The model's accuracy in predicting
the natural frequencies is also compared with a numerical solution for a simply supported
truncated conical beam [15]. Finally, a cantilever beam version of the model including
damping (represented as dash-pots at each spring position) is used to predict the dynamic
response of a beam with a sti!ness non-linearity and the results are compared with a simple
experiment.

2. A DISCRETE APPROXIMATION TO THE BEAM

The model of the beam is based on the ideal of representing the bending and shear
sti!nesses in discrete form. The beam is represented as a series of rigid blocks connected by
rotational and transverse springs. The rotational spring approximates the bending of the
beam and the transverse spring approximates the shear.

Firstly, the mass and inertia of the beam are approximated in lumped form. The beam is
split into N blocks, those at either end being half the length of the other blocks as shown in
Figure 1(a). The mass and rotational moment of inertia of each are then lumped at its centre
as shown in Figure 1(b). For blocks of rectangular cross-section the mass and rotational
inertia of block n are given by

m
n
"obhl

n
, J

n
"(m

n
/12) (h2#l2

n
), (1, 2)

where b is the width of the beam, h is the depth and l
n
is the length of the block, which is

given by ¸/(N!1) where ¸ is the total beam length, except for the two end blocks which
have length ¸/2(N!1).

Secondly, the light #exible elements between the lumped masses and inertias are
approximated by rigid elements connected by rotational and transverse springs. For the end
elements, the compliance due to the half-length element in contact with the support and half
of the next element is lumped at the block boundary between the end and the second
element, as shown in Figure 1(c). The notation for the spring positions and the rigid blocks
is de"ned in Figure 1(c). The displacement and rotation of the rigid block n are de"ned in
Figure 2, where the forces acting on the block due to the springs at either end are also
shown. It should be noted that as there are no springs at the supports and as the beam is
simply supported, the moments at the supports (M

1
and M

N`1
) are zero.
Figure 1. Modelling of the beam as discrete blocks.



Figure 2. Forces and displacements at block n.

Figure 3. Spring at position n.
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It is now necessary to calculate the required rotational and transverse spring sti!nesses at
spring position n (K

n
and <

n
respectively) to model the bending and shear distortion. In the

lumped model, the springs at position n are subjected to moment M
n

and shear force S
n
,

representing the bending and shear distortion over a length l from the centre of block n!1
to the centre of block n, as shown in Figure 3(a) (with the exception of the end springs which
represent the distortions from the support to the block position 2 or N!1, which is still
length l). Now consider the intermediate stage where the mass and inertia have been lumped
but the compliance is distributed, as in Figure 1(b). The only forces and moments on the
beam element are applied at the ends. If the moment and shear at the centre of the beam
element take values M

n
and S

n
, then the end moments are shown in Figure 3(b). The relative

end rotation of this beam is given by
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where I is the second moment of area for the element and E is Young's modulus. The
relative end de#ection (including shear distortion) is given by
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where kA is the e!ective shear area and G is the shear modulus. These equations may be
compared to the relative rotation and de#ection equations for the beam with the lumped
compliance,
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to give the spring sti!nesses:
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. (7, 8)

Shear distortion has only a minor e!ect on the vibration of a beam. Later it will be shown
that for a stocky rectangular beam the e!ect on the frequency of the third mode is about 8%
and far less for the "rst and second modes. It is a common assumption that shear distortion
can be ignored, as for example in the Euler}Bernoulli approximation to a beam. If
a rectangular cross-section beam is considered, upon taking E/kG"3 (a typical value
quoted by Clough and Penzien [16]), and noting that (N!1)l"¸ where ¸ is the total
length of the beam, the transverse spring constant may be written as
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n
"

kAG

l

1

1#1/3j2(N!1)2
, (9)

where j"h/¸, the depth-to-length ratio for the whole beam. It can be seen that the
contribution to the transverse spring sti!ness due to bending is small compared to that
made by the shear distortion, which in turn has only a small e!ect on the overall behaviour
of the beam. As the e!ect decreases with increasing numbers of blocks, it was decided to
ignore the contribution of the bending distortion to the transverse spring, giving

<
n
"kAG/l. (10)

2.1. MODEL IGNORING SHEAR EFFECTS

A discrete model of a beam ignoring shear distortion is derived below. Shear distortion
does a!ect the natural frequencies of a beam and so is included in the model in the next
section; however it is worth deriving the model excluding shear distortion "rst as it is
signi"cantly easier. Ignoring shear distortion allows the spring representation of the
de#ection to be reduced to simply a rotational spring at each location and so it is possible to
express the displacements purely in terms of the rotations.
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2.1.1. Derivation of the model

The forces acting on block n are shown in Figure 2, where M
n

is the moment due to
de#ection of the spring at position n, l

n
is the length of block n, m

n
is its mass and J

n
is its

moment of inertia. It follows that the equations of motion of the block are
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The moment at position n can be expressed in terms of block rotations and spring sti!ness,
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except for M
1
and M

N`1
at either end of the beam, where the moments are zero as the beam

is simply supported. If the beam is damaged this relationship between block rotation and
resulting spring moments can be altered easily. For example, the spring sti!ness K

n
could be

altered at each time step. An expression for displacement y
n

may be written in terms of
rotations and the displacement y

n~1
and by di!erentiating twice with respect to time the

rotational and linear accelerations may also be related:
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The "nal equation to be derived is the boundary condition that the displacement of one end
with respect to the other end of the beam is zero. This may be expressed as

N
+
n/1

l
n
h
n
"0. (16)

From these equations it is possible to express the rotational accelerations in terms of the
rotations of each block and so, by using a time-stepping method, to solve the equations
for given initial conditions. First, the equations must be written in matrix form. The
derivation shown here is for the case where there are four blocks in the model. This is an
unrealistically small number, but the derivation for larger numbers of blocks is identical.

The linear equations of motion for all the blocks may be expressed in matrix form. Since
there are N#1 shear forces but only N equations relating shear forces to accelerations yK

n
, it

is only possible to eliminate N of the shear forces by using the vertical equations of motion
and so the shear force S

1
is kept out of the shear vector and included as a separate vector:
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Similarly, the rotational equations of motion may be expressed in matrix form as
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The N!1 rotational spring equations may be expressed as
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The compatibility equations may be written in matrix form as
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Finally, the boundary condition equation is
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where MlNT is the transpose of MlN.
These matrix equations may be rearranged to enable the calculation of the rotational

accelerations for a given set of rotations, and so may be used in a time-stepping method.
Firstly, equations (22) and (18) may be used to eliminate MMN and MSN in equation (20). Then
the MyK N vector may be eliminated by using equation (24) di!erentiated twice with respect to
time. The resulting equation is
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This is simpli"ed by de"ning E~1"J!1
4
LBA~1mA~1BL and noting that 1

2
L (MaN#

BA~1MaN) is the same as a column vector MlN of the lengths of each block, giving
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1
. (28)

This equation along with the boundary condition equations may be used to "nd the
rotational accelerations in terms of the rotations in two steps.

Step 1: Calculate the shear force S
1

from the rotations, using the boundary condition,
equation (26), di!erentiated twice with respect to time, and equation (28):

MlNTMhG N"MlNTECKDMhN#MlNTEMlNS
1
"0. (29)

Step 2: Calculate the rotational accelerations by substituting the shear force S
1
, calculated

in step 1, into equation (28) above.

2.1.2. Checking the validity of the model

In the case of an undamaged beam of uniform cross-section, it is possible to solve the
continuous equation of motion of the beam to "nd the natural frequencies and so check the
validity of the discrete model. The continuous equation of motion is [16, 17]
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where kA is the e!ective shear area of a cross-section, mN is the mass per unit length and r is
the radius of gyration, i.e., r2"I/A, where I is the second moment of area. The "rst two
terms in the equation are the terms found in the elementary case where neither rotational
inertia nor shear distortion are taken into account, the third term is due to rotational
inertia, the fourth due to shear distortions and the last term due to a combination of
rotational inertia and shear distortion. Therefore, ignoring shear e!ects reduces the
left-hand side of the equation to the "rst three terms only. Weaver et al. [18] stated that for
a simply supported beam, with or without the inclusion of rotational inertia and shear
distortion, the deformed shape will take the form
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where i is the mode number 1, 2, 3,2, and u
i
is the natural frequency of mode i. Therefore,

the natural frequency of mode i, upon ignoring shear distortion, u
ai
, may be expressed as

u
ai
"u

oi
/J1#(inr/¸)2 , (32)

where u
oi

is the natural frequency of the elementary case upon ignoring both the rotational
inertia and the shear distortions:

u
oi
"i2n2JEI/mN ¸4 . (33)

The discrete model can now be tested. The choice of time step was checked by running the
model a second time at half the time step and comparing the time signal. The time step used
was in the order of 1]10~5 s, the precise value depending on the number of blocks in the
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model. The natural frequencies predicted by the model can be calculated by using
the discrete Fourier transform of the displacement signal and these can be compared to the
theoretical values. Figure 4 shows the "rst three natural frequencies predicted by the model
when using varying numbers of blocks for a rectangular cross-section beam with
a depth-to-length ratio of 0)21. The frequency values are normalized by using the theoretical
frequencies calculated from equations (32) and (33). It shows that the model performs very
well even with a reasonably small number of blocks for the "rst two modes, and if 20 or
more blocks are used there is less than 0)5% error in predicting the frequencies of the "rst
three modes.

Figure 5 shows the corresponding mode shapes calculated from the time signal generated
by the model when 20 blocks are used, plotted as points at each block centre, compared
Figure 5. Mode shapes calculated using the model which excludes shear deformation. d, calculated;**, actual.

Figure 4. Frequencies predicted by the model which excludes shear deformation for varying numbers of blocks
(the frequencies are normalized by using u

ai
, the theoretical frequency of mode i ignoring shear deformation).

*d*, fundamental; ) ) )d ) ) ), mode 2; }d }, mode 3.
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with the expected sinusoidal mode shapes. There is very good agreement here too between
the calculated model values and the actual values for the "rst three modes.

2.2. MODEL INCLUDING SHEAR DISTORTION

2.2.1. Ewect of shear distortion on natural frequencies
In reality a beam will be subjected to both bending and shear de#ections. Although these

additional shear e!ects make only a relatively small di!erence in the natural frequencies,
they should not be ignored because the changes in natural frequency due to damage are also
expected to be small. The e!ect of the shear distortions on the natural frequencies may be
examined by looking again at the equation of motion of a beam, equation (30). If the
expected mode shape equation (equation (31)) is substituted into the equation of motion, an
equation for the natural frequencies can be found in two stages.

Firstly, if the last term on the left-hand side of the equation of motion (the term due to
a combination of shear and inertial e!ects) is ignored, an equation for the resulting natural
frequency may be derived by using the mode shape equation

u
bi
"

u
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J1#(rni/¸)2(1#E/kG)
, (34)

where u
bi

is the natural frequency of mode i if only the term due to the combination of shear
and inertial e!ects is ignored.

Now the e!ect of the last term can be examined. If a correction term i
i
, for mode i, is

de"ned to relate u
bi

to the actual natural frequency u
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(which includes all the terms in
equation (30)),
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then by substituting the mode shape into the equation of motion it can be shown that
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Except when the slenderness is very low or a high mode number is being considered, a
i
is

small and so the expression for i
i
may be simpli"ed to

i
i
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i
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Table 1 shows the natural frequencies including shear deformation (u
ci
) and excluding shear

deformation (u
ai
) non-dimensionalized using u

oi
(the natural frequency if both shear

distortions and rotational inertia are ignored), for a range of values of r/¸. For a rectangular

section of uniform material properties the depth-to-length ratio h/¸"J12(r/¸). A value of
E/kG"3 was used as suggested by Clough and Penzien [16] as a typical value for
a rectangular cross-section.



TABLE 1

Normalized natural frequencies with and without shear distortions, where u
a
is ignoring shear

deformation, u
c
is including shear deformation and u

o
is ignoring shear deformation and inertia

u
a
/u

o
u

c
/u

o

r/l Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

0)005 1)000 1)000 0)999 1)000 0)998 0)996
0)010 1)000 0)998 0)996 0)998 0)992 0)983
0)015 0)999 0)996 0)990 0)996 0)983 0)963
0)020 0)998 0)992 0)983 0)992 0)970 0)937
0)025 0)997 0)988 0)973 0)988 0)955 0)907
0)030 0)996 0)983 0)962 0)983 0)937 0)875
0)035 0)994 0)977 0)950 0)977 0)918 0)842
0)040 0)992 0)970 0)936 0)970 0)897 0)809
0)045 0)990 0)962 0)921 0)963 0)875 0)776
0)050 0)988 0)954 0)905 0)995 0)853 0)744
0)055 0)985 0)945 0)888 0)946 0)831 0)713

Figure 6. Diagrammatic representation of the model which includes shear deformation.
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This shows that the shear e!ects are signi"cant. For example, if r/¸"0)04 the error in the
predicted frequency of mode three is 16%. Therefore, to represent the actual beam
accurately the shear distortions must be included in the model.

2.2.2. Derivation of the model

The major advantage in ignoring shear deformation in the previous section is that the
de#ections y

n
of the centre of block n can be expressed as a function of the rotations of each

block by using equation (24). Figure 6 shows the additional shear springs included in the
model of a beam, which give rise to additional de#ections d

n
. There are no shear springs at

the supports so d
1

and d
N`1

are zero.
Due to the deformation of the shear springs, it is now not possible to express the block

de#ections in terms of only the rotations of each block, as the d de#ection values are also
needed. This means that the number of degrees of freedom has increased from N to 2N!1:
i.e., there are now degrees of freedom d

2
to d

N
in addition to the rotational degrees of
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freedom h
1

to h
N
. It should be noted that there is one less shear degree of freedom than

rotational degree of freedom as there are N blocks with N!1 joints between them.
The equations of motion for block n are the same as for the model with no shear

distortions (equations (11) and (12)), as is the equation using the rotational spring sti!ness to
give the moments from rotations as spring position n (equation (13)). There is an additional
set of equations relating extension of the shear springs with shear force for each spring
position:
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n
, (39)

where <
n
is the sti!ness of the shear spring (equation (10)). Equation (14) relating de#ection

to block rotations must be modi"ed to take into account the shear de#ections, and so too
the equation relating accelerations (equation (15)). They become

y
n
"y

n~1
#

l
n~1
2

h
n~1

#

l
n
2

h
n
#d

n
, (40)

yK
n
"yK

n~1
#

l
n~1
2

hG
n~1

#

l
n
2

hG
n
#dG

n
. (41)

Finally the boundary condition that one end of the beam may not move relative to the other
(equation (16)) must be altered to include shear de#ections:

N
+
n/1

l
n
h
n
#

N
+
n/2

d
n
"0. (42)

As before these equations are used in a time-stepping routine. To do this it is necessary to
calculate the accelerations of the 2N#1 degrees of freedom given the displacements of
those degrees of freedom. It was chosen to take the displacements of the block centres
(y

12
y
N
) and the shear displacements (d

22
d
N
) to be the degrees of freedom, although it

would have been equally valid to use the rotations of the block centres (h
12

h
N
) and shear

displacements instead. The di$culty in using these equations to "nd the yK and dG values if
values for y and d are known is that there are both varying numbers of the di!erent sets of
equations and of di!erent sets of unknowns, as shown in Table 2.

The easiest way to solve this problem is to express the equations in matrix form with
vectors of values of unknowns 2 to N and additional vectors of the other unknowns S

1
,

S
N`1

, hG
1
, yK

1
and h

1
. Where there are more than N!1 equations in a set then the additional

equations must be expressed separately. This approach ensures that all the matrices are
TABLE 2

Numbers of equations and unknowns

Type of unknown Number Type of equation Number

S N#1 vertical equations of motion N
M N!1 rotational equations of motion N
hG N equations for rotational springs N!1
dG N!1 equations for shear springs N!1
yK N compatibility of displacements (y"f (h, d)) N
h N compatibility of accelerations (yK"f (hG , dG )) N

Boundary condition 1
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invertible and so allows the equations to be manipulated easily. As with the previous model,
the last step before calculating the accelerations is to eliminate a "nal unknown, this time
the shear force S

N`1
, using the boundary condition.

The derivation shown here is again for the case where there are only four blocks in the
model. Firstly, the linear equations of motion for blocks 2 to 4 may be expressed in
matrix form,

A
m

2
0 0

0 m
3

0

0 0 m
4
B A

yK
2

yK
3

yK
4
B"A

!1 1 0

0 !1 1

0 0 !1 B A
S
2

S
3

S
4
B A

0

0

1BS
5
, (43)

m@MyK @N"A@MS @N#Ma @NS
5
, (44)

where the prime notation is used to distinguish the vectors and matrices from those used in
the model excluding shear distortions, and the equation of motion for block 1 is written
separately:

m
1
yK
1
"S

2
!S

1
. (45)

Similarly, the rotational equations of motion are expressed as

A
J
2

0 0

0 J
3

0

0 0 J
4
B A

hG
2

hG
3

hG
4
B"A

!1 1 0

0 !1 1

0 0 !1 B A
M

2
M

3
M

4
B

#

1

2 A
l
2

0 0

0 l
3

0

0 0 l
4
B A

1 1 0

0 1 1

0 0 1 B A
S
2

S
3

S
4
B#l

4
2 A

0

0

1BS
5
, (46)

J@MhG @N"A@MM@N#
1

2
L@B@MS@N#

l
4
2

Ma@NS
5
, (47)

and for block 1

J
1
hG
1
"M

2
#

l
1
2

(S
1
#S

2
) . (48)

There are only N!1 rotational springs equations so they may be written as matrix
equations without the need for an additional equation:

A
M

2
M

3
M

4
B"A

K
2

0 0

0 K
3

0

0 0 K
4
B A

1 0 0

!1 1 0

0 !1 1 B A
h
2

h
3

h
4
B!K

2 A
1

0

0B h
1
, (49)

MM@N"K@C@Mh@N!K
2
Mb@Nh

1
, (50)

and similarly for the linear spring equations,

A
S
2

S
3

S
4
B"A

<
2

0 0

0 <
3

0

0 0 <
4
B A

d
2

d
3

d
4
B , MS@N"V@Md@N (51, 52)
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The compatibility equation may be written in matrix form,

A
1 0 0

!1 1 0

0 !1 1 B A
y
2

y
3

y
4
B"1

2 A
1 0 0

1 1 0

0 1 1 B A
l
2

0 0

0 l
3

0

0 0 l
4
B A

h
2

h
3

h
4
B#A

d
2

d
3

d
4
B#2 A

1

0

0 B y
1
, (53)

C@My@N"1
2

D@L@Mh@N#Md@N#2Mb@Ny
1
, (54)

with an additional equation for block 1:

y
1
"(l

1
/2) h

1
. (55)

Finally, the boundary condition may be written as

l
1
h
1
#(1 1 1) A

l
2

0 0

0 l
3

0

0 0 l
4
B A

h
2

h
3

h
4
B#(1 1 1) A

d
2

d
3

d
4
B"0, (56)

l
1
h
1
#Mc@NTL@Mh@N#Mc@NTMd@N"0. (57)

As stated earlier, there are 2N!1 degrees of freedom (7 in this case): the displacements of
the block centres (y

12
y
N
N and the shear displacements (d

22
d
N
). For a time-stepping

method, equations relating the accelerations of the degrees of freedom in terms of the
displacements are required. The time-stepping method then predicts the displacements for
the next time point. There are "ve steps to calculating the accelerations from the
displacements:

Step 1: Calculate the rotations using the compatibility equations (54) and (55):

h
1
"2y

1
/l
1
, (58)

Mh@N"2L@~1D@~1(C@My@N!Md@N!2 Mb@Ny
1
) . (59)

Step 2: Calculate the bending moments and shear forces between the blocks using
equations (50) and (52). Note that the shear forces at either end of the beam, S

1
and S

N`1
are

still unknown (M
1

and M
N`1

are both zero as the beam is simply supported).
Step 3: Calculate the accelerations for block 1 by using equations (45) and (48) and the

compatibility equation (55), di!erentiated twice with respect to time. The shear force S
1

at
the end of the beam is eliminated, giving

hG
1
"

4(M
2
#l

2
S
2
)

4J
1
#m

1
l2
1

, yK
1
"

l
1
hG
1

2
. (60, 61)

Step 4: Calculate the shear force at the end of the beam S
N`1

by using equations (44) and
(47) and equations (54), (55) and (57) di!erentiated twice with respect to time:

S
5
"

1

m
4
l2
4
#4J

4

(2m
4
l
4
M

4
#(4J

4
!m

4
l2
4
)S

4
). (62)
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Step 5: Calculate the accelerations by using equations (44), (47) and (54) di!erentiated
twice with respect to time, and the shear force S

N`1
:

MhG @N"J@~1(A@MM@N#1
2

L@B@MS@N#1
2
l
4
Ma@NS

5
), (63)

MyK @N"m~1(A@MS@N#Ma@NS
5
), MdG @N"C@MyK @N!1

2
D@L@MhG @N!2Mb@NyK

1
(64, 65)

2.2.3. Checking the validity of the model

As with the model excluding shear deformation, it is possible to check the validity of the
model for a range of numbers of blocks by using the continuous equation of motion and the
sinusoidal expected mode shapes [18]. For a beam of rectangular cross-section with
uniform material properties, a depth-to-length ratio of 0)127 and E/kG"3, Figure 7 shows
the variation of the predicted frequency with number of blocks. Figure 8 shows the same
relationship for a beam with a depth-to-length ratio of 0)1. The "gures show very good
agreement between the model and the expected frequency values if more than 20 blocks are
used.

For the case where the depth-to-length ratio is 0)1, the mode shapes for the "rst three
modes were calculated. These are plotted for 8, 10 and 20 blocks in Figures 9, 10 and 11. The
mode shapes are plotted in the form of the actual block positions, the centres of which are
marked with dots. The vertical gaps between the ends of the blocks are due to the
deformation of the shear springs. The true sinusoidal mode shapes are also plotted for
comparison.

Rather than substituting an equation for the sinusoidal mode shape into the continuous
equation of motion to "nd the natural frequencies, it is also possible to solve the equation
for the natural frequencies numerically without using the mode shapes, although this is
limited to linear vibrations. This has been done by Chen [15], who considered the vibration
Figure 7. Frequencies predicted by the model including shear deformation for varying numbers of blocks
(depth-to-length ratio"0)127, normalized by using u

ci
, the natural frequency including shear deformation and

rotational inertia). *d*, fundamental; ) ) )d ) ) ), mode 2; }d }, mode 3.



Figure 8. Frequencies predicted by the model including shear deformation for varying numbers of blocks
(depth-to-length ratio"0)1, normalized by using u

ci
, the natural frequency including shear deformation and

rotational inertia). *d*, fundamental; ) ) )d ) ) ), mode 2; }d }, mode 3.

Figure 9. Mode shapes calculated by using the model including shear deformation with 8 blocks (depth-to-
length ratio"0)1). **, actual; *d*, calculated.
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of a simply supported tapered cylinder. When the taper is zero, the results from this
numerical solution may be compared with the results of substituting the sinusoidal mode
shape into the continuous equation of motion and to the results obtained by using the
model. If the ratio of the radius of the cylinder to the length is taken to be 0)1 and the value
E/kG"2)93 used by Chen is taken, then results obtained by using the numerical method
agree well with the results obtained by using the sinusoidal mode shapes, con"rming that
the mode shape used in the substitution is the correct one. The agreement with the block
model is also good, with less than 0)1% error in the prediction of the frequencies of the "rst
"ve modes if 50 blocks are used, and an error of only 1)2% if 20 blocks are used.



Figure 10. Mode shapes calculated by using the model including shear deformation with 10 blocks (depth-to-
length ratio"0)1). **, actual; *d*, calculated.

Figure 11. Mode shapes calculated by using the model including shear deformation with 20 blocks (depth-to-
length ratio"0)1). **, actual; *d*, calculated.
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For the case where the taper is non-zero, the mode shapes are not sinusoidal. If the radius
of the beam at one end is twice the radius at the other end, and the ratio between the radius
at the thinner end and the length of the beam is 0)1, the agreement between the numerical
method and the block model is good, with the error in the "rst four modes being less than
0)3% with 30 blocks. Figure 12 shows the "rst four mode shapes calculated by using the
model with 30 blocks. It should be noted that the numerical method of solving the equation
of motion proposed by Chen [15] is incapable of including any non-linear damage as it
requires an expression for the sti!ness which is independent of time.

These tests show that the block model is an accurate predictor of the behaviour of
a simply supported beam subjected to free vibration.



Figure 12. Mode shapes for a tapered cylindrical beam calculated by using the model including shear
deformation with 30 blocks.

Figure 13. Sti!ening beam element.
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3. MODELLING NON-LINEAR DAMAGE

The model has been shown to predict to a high degree of accuracy the frequencies and
mode shapes of an undamaged beam when compared to theoretical values. Now it is used to
predict the behaviour of a beam with a non-linear element which is then compared with the
experimental results.

3.1. EXPERIMENTAL SET-UP

One end of an aluminium bar was clamped tightly to a rigid base to form a cantilever.
The bar was 25 mm wide and 6)4 mm deep, and the length of the cantilever was 0)5 m. Close
to the root a non-linear section of beam was created by bonding two blocks onto the beam,
with a bolt protruding out of one and almost in contact with the other (as shown in Figure
13) so that when the beam bends the blocks move closer together and the bolt comes into
contact with the second block, increasing the sti!ness of that region of the beam. The
curvature at which contact occurs may be adjusted by using the bolt. One of the blocks was
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electrically isolated from the beam so that a voltage signal could be generated indicating
when contact has occurred.

The non-linear element was attached in a position which corresponded to spring position
2 in a 10 block model (the numbering system started at the root) and a!ected the sti!ness
over one block length. An accelerometer was attached to the cantilever at the mid-point of
block 2. The cantilever was given an initial tip de#ection of 15)5 mm and then released. The
accelerometer output and the voltage across the blocks were recorded for 10 s at a sampling
frequency of 8192 Hz per channel.

3.2. MODEL SET-UP

For the cantilever beam, it is necessary to adjust the model to account for the di!erent
boundary conditions. As the beam is "xed at one end, the rotation and hence displacement
of the half-length block at the end are always zero since the de#ection of the "rst beam
element is represented by the rotational and shear spring positioned between the "rst and
second rigid blocks. The boundary condition used previously is no longer true as it ensured
that the relative displacement of the ends of the beam remained zero. Instead the shear force
at the free end of the beam is now zero. With these new conditions the derivation of the
model proceeds along much the same lines as for the simply supported beam. To model the
non-linearity, the rotation of the spring at position 2 was checked at each time point and if it
exceeded a threshold value Dh

th
the sti!ness of the spring used for subsequent time steps was

increased by a factor b, so the moment curvature equation for the spring was

M
2
"K

2
(b(h

2
!h

1
)!(b!1)Dh

th
), (66)

until the rotation was found to be less than the threshold value.
In addition to the springs representing the beam compliance, damping was added at the

spring positions in the form of rotational dash-pots (damping due to shear deformation was
ignored as the e!ect of shear deformation is small for the slender beam). This was included
by modifying equation (50) to

MM@N"K@C@Mh@N!K
2
Mb@Nh

1
#P@C@MhQ @N!PMb@NhQ

1
, (67)

where P@ is the dash-pot coe$cient P multiplied by the identity matrix.
The model beam was excited by using the theoretical statistically deformed shape

(assuming no shear distortions) due to a load at the tip su$cient to de#ect the tip by
15)5 mm. A 10 block model implemented in Matlab with a fourth-order Runge}Kutta
routine was run for 5 s with a time increment between steps of 1]105 s, taking
approximately 2)5 h on a 200 MHz PC with a Pentium Pro processor. The rotational
inertia of the bolt assembly was ignored as the assembly was close to the root of the
cantilever and the cantilever was slender so rotational inertia e!ects are small.

3.3. PROCESSING DATA FROM EITHER THE MODEL OR THE BEAM

Data were generated for the acceleration at position 2 and voltage signal (indicating
whether the element is open or shut) for both the beam and the model. From these data
three types of graph may be plotted.

Firstly, a time}frequency graph may be calculated for the "rst mode. This was done using
the joint time}frequency distribution (see reference [19]) with the kernel suggested by
Zheng and McFadden [20]. Zero padding was used to improve the frequency resolution.
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Secondly, the acceleration envelope for the "rst mode can be calculated. This was done by
applying an ideal low-pass "lter to the Hilbert transform of the signal in the frequency
domain and then using the inverse Fourier transform to calculate the low-frequency
acceleration envelope.

Thirdly, the proportion of time the non-linear element was closed may be calculated,
using the voltage signal across the blocks of the element, by setting a suitable threshold
below which the blocks are in contact and the element was considered shut.

3.4. COMPARISON BETWEEN THE MODEL AND THE BEAM

Several unknowns must be established by "tting the model results to the beam results:
Young's modulus, the damping coe$cient, the sti!ening factor b for the non-linear element
and the threshold curvature Dh

th
at which the non-linear element becomes sti!er.

Initially, a linear oscillation of the beam was recorded and Young's modulus and the
damping (dash-pot coe$cient P) values in the model were adjusted so that the "rst natural
frequency and the decay envelope of the acceleration of the "rst mode were equal in the
model and the beam. Values of E"76)6 GPa and P"0)046 Nms were found to give the
best "t. The e!ect of shear de#ection is only slight so a value of E/kG"3 was used. The
model over-predicted the acceleration by about 3%.

A second linear test was used to set the sti!ening parameter b. In this test the bolt was
tightened onto the block so ensuring that for small amplitudes the mechanism remained in
the closed position for the whole cycle. The sti!ness of the spring nearest the root in the
model was then adjusted so that the frequency of the time signal generated in the model
matched the experimental frequency. b is then simply the ratio of that sti!ness to the
sti!ness when the bolt is not in contact. The value b"2)0 was found to be optimal.

Then, the non-linear test was recorded (both the voltage across the non-linear element
and the acceleration at block position 2). The gap between the bolt and the block was set to
0)025 mm. The threshold rotation value was set so that the initial percentage of each cycle
the non-linear element was open was the same in the beam and the model. The value
Dh

th
"0)004 rad was used.
Figure 14. Time-frequency plots. **, beam test s50/ baseline s52; ) ) ) ) ), beam test s51/ baseline s52; } )} ) },
model test 15/ baseline frequency.
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Three experimental tests were used here. Two were non-linear tests (s50 and s51)
conducted under identical conditions. The third test (s52) is a linear test (the bolt in the
non-linear element was retracted so the bolts never came in contact). The non-linear tests
are compared to model run 15. Figure 14 shows the time}frequency plots for experimental
tests s50 and s51, the frequency being normalized by using the linear test s52, and the model
run 15 using the values of b and Dh

th
stated above. Linear tests where the bolt does not

come in contact with the block during the oscillation are referred to as baseline tests. Figure
15 compares the acceleration envelopes for the "rst mode for all four tests, the experimental
non-linear tests s50 and s51, the baseline linear test s52, and the model run 15. Figure 16 is
a plot of the percentage of each cycle for which the element is open against the time at which
that cycle occurs. The spikes in the experimental data in this "gure are due to bouncing of
Figure 16. Plots of percentage of time open. **, beam test s50;*, beam test s51; } ) } ) } , model test 15.

Figure 15. Fundamental mode acceleration envelopes.**, beam test s50; ) ) ) ) ), beam test s51; } )} ) }, baseline
s52; } } }, model test 15.
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the bolt against the block as the element closes. The "gures show good agreement between
the model and the experimental test. The agreement is expected to be very good at the
beginning of Figure 16 as this was ensured when selecting the Dh

th
value. However, the

model also agrees well with the experimental data for the rest of the oscillations,
demonstrating its ability to model non-linear mechanisms.

4. CONCLUSION

In this paper a time-stepping model of a transversely vibrating simply supported beam
has been proposed. It is based on the idea that the mass and inertia of the beam may be
approximated by point masses and inertias at discrete points, and shear distortion and
bending sti!ness may be represented using rotational and transverse springs between rigid
blocks. Two models were devised, "rstly a simple one ignoring shear distortion (and hence
the linear springs) and then one including the shear distortion. For the model including
shear distortion, the natural frequencies and mode shapes for the "rst three modes, derived
from acceleration data generated by using the model, compared well to theoretical values
with less than a 0)1% error if 20 or more blocks were used and only a 0)6% error when a 10
block representation was used.

The advantage of this method over other methods of modelling cracked vibrating beams
is that it is capable of modelling breathing cracks without the assumption that the vibration
is dominated by the fundamental mode and so the crack compliance will cycle at the same
frequency. Non-linear damage is modelled by altering the spring sti!ness at each time step
depending on the curvature of the beam at that time. The model's capabilities of predicting
the non-linear behaviour have been demonstrated by using a cantilever beam with
a non-linear element which resulted in a localized sti!ening of the beam when the curvature
exceeded a threshold value.
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